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Abstract-The problem considered is that of controlling the temperature distribution of a fluid in fully 
developed Iaminar flow through a circular tube. It is assumed that suitable heating and cooling arrange- 
ments are available in a refractory casing surrounding the tube and that in its passage through a section 
of the tube of given length the mean temperature of the fluid has to be reduced (or increased) by a 
specified amount. The main feature of the problem lies in the additional requirement that the temperature 
distribution at the final cross-section must also be controlled to achieve some desired distribution. The 
problem is solved by application of optimal control theory. A quadratic cost functional is set up which 
includes a term measuring the closeness of fit to the desired exit temperature distribution and a constraint 
term to avoid unrealistic temperatures in the refractory. The sohttion is obtained by use of a Matrix- 
Riccati algorithm and also by dynamic programming Numerical results are presented for a particular 
flow of molten glass. Typical exit and refractory temperature distributions are exhibited and the benefits 
of control are demonstrated. The results show clearly the extent to which the desired temperature 

distribution can be achieved for given available power. 
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system matrix; 
driving matrix; 
inner radius of refractory; 
outer radius of refractory; 
discrete system matrix, equation (32); 
discrete driving matrix, equation (32); 

defined in equations (34) and (35); 

heat-transfer coefficient; 
index, defined in equation (36); 
glass thermal conductivity; 
refractory thermal conductivity; 
tube length; 
defined in equation (35); 
solution of Matrix-Riccati equation 
[section 3.1 or equation (35)]; 
control weighting parameter, equation (30); 
radial position; 
target set wei~ting matrix; 
diagonal elements of S; 
temperature; 
temperature at centre line of jth shell; 
temperature at inner and outer surfaces 
of refractory; 
ambient temperature; 
mixed mean temperature; 
normalized distance along tube; 
control variable, Tb; 

centre-line velocity; 
w(r, z), velocity; 
x, state vector, [T,, . . . , Tn] T; 

YP x--xx; 

Z defined in equations (34) and (35); 
z, .distance along tube. 

Greek symbols 

aT, weighting constants for T evaluation; 

a, 
B> 1 

constants defined in equation (14); 

B. I, 1 - ($/uZ); 

Y? 
6, 1 

constants de&d in equations (23) and (24); 

r, defined in Section 3.1; 

%, T-X?. 

Superscripts 

c, controlled; 

R, reference or uncontrolled. 

Subscripts 

inlet ; 
;; final.’ 

THERE are many industrial processes in which it is 
required to heat or cool a fluid as it flows through a 
tube. Often, it is the increase or decrease of the mean 
cross-sectional temperature which is of interest, but 
there are cases in which it is also necessary to exercise 
some control over the temperature ~st~bution, par- 
ticularly that at the tube exit. Such a situation arises 
in the glass industry, for example, where glass nearing 
the final stages of certain manufacturing processes 
must be brought to a temperature as near uniform as 
possible to prevent unwanted inhomogeneities in the 
finished article. 

This paper is concerned with setting up and analysing 
a simple model of a problem of this kind. Essentially, 
we shall consider a fluid flowing through a circular 
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tube in which it is required to reduce the overall tem- 

perature by a specified amount and in such a way that 
the final temperature profile is as near uniform as 
possible. It is, perhaps, fairly clear intuitively that with 

no constraints and with the expenditure of sufficient 
effort, in the form of power input and output at 
appropriate positions along the wall of the tube, it 
should be possible to exercise control of the exit tem- 

perature profile to any specified degree. However, in 
reality there are obviously physical constraints on the 
temperatures which the system can withstand and 
limitations on the available power. Our main objective 

is to determine the optimum exit profile that can be 
achieved under certain operating conditions and the 
corresponding power consumed. Using a suitable 
measure of the nearness of the final profile to that 
desired, we can then investigate the variation of the 
return that can be achieved as the power available is 

varied. 
The problem that we pose falls within the realm of 

the theory of control of distributed parameter systems. 
This is a very rapidly expanding area of control theory 
in which the study of heat flow problems has featured 
strongly since Butkovsky’s early work on temperature 
distribution in a moving flat plate (see Butkovsky [1], 
for example). Much of the published work is concerned 
with the simple one-dimensional heat flow equation 
and, so far as we are aware, the coupled problem of 
the control of the temperature distribution in a fluid 
with spatial variations of velocity and temperature 

dependent viscosity has not been solved. A fairly recent 
survey of the literature is given by Robinson [2]. 

The mathematical analysis is based upon a simple 
model of Poiseuille flow and is aimed at bringing the 
problem into a form suitable for application of two 
standard techniques in control theory, namely the 
Matrix-Riccati formulation and the method ofdynamic 
programming. In practice, dynamic programming 
proves to be the superior method as it is capable of 
handling a wider range of operating conditions. How- 
ever, both methods will be discussed since it is useful 
to understand the limitations of the Matrix-Riccati 
method in the context of this problem and it also 
provides a valuable check on the accuracy of the results 
obtained by dynamic programming in the range where 
both are applicable. 

2. MATHEMATICAL MODEL 

2.1. Flow and heat transfer equations 
Consider an incompressible fluid in steady laminar 

flow along a horizontal circular tube of radius a. The 
wall of the tube is assumed to be of negligible thickness 
and the tube is surrounded by a cylindrical shell of 
uniform insulating material of inner radius a and outer 
radius b. The configuration is shown in Fig. l(a); Y- and .z 
are the radial and axial coordinates, respectively, with 
z increasing in the direction of the flow. 

Let the fluid entering the cross-section at z = 0 have 
a uniform temperature z’. Heat is lost through the 
insulator and hence at all cross-sections z > 0 the 
average fluid temperature will be less than z. The 
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FIG. 1. (a) Cylindrical polar coordinates. 
(b) Illustration of radial steps. 

“average temperature” may be defined in several ways, 
but it is convenient to use the mixed mean temperature 

s 

a 
wTrdr 

T(z)= Oa 

s 

, (1) 
wrdr 

0 

where w is the axial component of fluid velocity. Clearly 
Ti(0) = T. At the exit plane z = z/. let 

T(z,) = Tf. 

For given flow and heat-transfer conditions the cross- 
section z = z/ at which z-- Tf reaches some given 
value can be found. We wish to determine conditions 
under which, over the length z/, a specified temperature 

drop L’- 7’, can be achieved, with the additional 
requirement that the cross-sectional temperature pro- 

file at z = z/ should be as near uniform as possible. 

To complete the formulation of the problem it is 
necessary to specify : 

(i) flow conditions; 
(ii) heat-transfer conditions; 

(iii) some constraint on allowable temperatures (for 

practical purposes). 
For the flow, the case which is of greatest practical 

interest for a fluid of constant properties is the 
Poiseuille distribution 

w(r,z)=W 
r2 

i ! l-- , 
a2 

(2) 

where Wis a constant. This profile will be used through- 
out the present paper. 

Let T,(z) and Tb(z) be the temperatures at r = a and 
r = b, and let the ambient temperature at large dis- 
tances from the tube be T,. Neglecting conduction in 
the axial direction and denoting by k, the conductivity 
of the refractory which occupies the region a ,< r < b, 
we find from an elementary solution of the heat- 
conduction equation that the rate of flow of heat 
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through the refractory, per unit length of tube, is 

27&K - %)/log@+). 

If the rate of flow of heat to the surroundings is 
h(T,- T,), per unit length of tube, where h is a heat- 
transfer coefficient, then for heat balance in the steady 
state 

h( T - T,) = 2nk,( T. - T,)/log(b/a). (3) 

Denoting the thermal conductivity of the fluid by k, 
the rate of heat transfer from the fluid to the refractory, 
per unit length of tube is 

where T is the fluid temperature. Hence we also have 

h(T,,- T,) = -2nak@T/&),=,. (4) 

In the fluid, the temperature is assumed to satisfy 
the differential equation 

CJT K 8 aT 
w-_=-- p- , 

a‘? ( 1 r f3r ar 
(3 

where K is the thermal diffusivity. This differential 
equation, together with conditions (3) and (4) and the 
inlet condition T = Y&, is sufficient to determine the 
temperature distribution at any cross-section. There is 
no simple analytical solution and the problem is most 
conveniently solved numerically. We note that T,(z) 
and Tb(z) will be calculated as part of the solution. 

Suppose that the plane z = zf at which a specified 
mixed mean temperature Fr is achieved has been found, 
assuming a reference value for the ambient temperature 
T,. Let the corresponding temperature at r = b be 
GR’. We suppose that we have at our disposal means 
of controlling the temperature Tb along the wall of the 
refractory, and the problem is to determine the distribu- 
tion &?’ of Ta(z) such that, with the same inlet condition 
as before (T = x at z = 0), the same mixed mean tem- 
perature T, is achieved at z = Z~ but the temperature 
distribution across the plane z = zJ is as near uniform 
as possible. It is convenient to leave until later a state- 
ment of the constraints which are imposed on a’) to 
avoid unrealistic temperatures. 

2.2. Discretization scheme 
The basic differential equation (5) can be integrated 

by various numerical methods, but for the control 
problem the following finite difference scheme is con- 
venient. 

Divide the tube of radius a into n coaxial shells each 
of thickness Aa = aJn, the jth shell being defined by 

(j-l)a/n<r<ja/n (j=1,2 ,..., n). 

Let T be the temperature at the mid-point 

r = rj = (j-$)Aa 

of the jth shell [Fig. l(b)]. For 2 < j < n - 1, the first and 
second derivatives of T at r = rj may be approximated 

by 

aT Tj+r-T,_, 
-= 
ar 2Aa 

and 

azT 7;+, -21;+ Tj_l 
T= (Aa)’ ’ 

Using these in the differential equation (5) leads to 

(2<j<n-1) (6) 

At the axis, aT/& = 0, and hence for j = 1 the differ- 
ential equation (5) becomes 

When j = n, we may take 

aT T.-T, -=_ 
ar AaJ2 

and 

~=~[(:>.=,-(~),=,_,1 
T.-T, T.-T,_2 

Hence (5) becomes 

dT, 
w(r, ,4 x 

=~[2(1+~),-(:+~),+17._,]. (8) 

In the case considered here, the fluid velocity is taken 
to have the Poiseuille distribution given by (2). Hence 
the convection terms in equations (6) (7) and (8) can 
be replaced by 

W(rj,Z)z = Fuji, (j= 1,2,...,n) (9) 

where /I, = 1 -($/a’). (10) 

Based upon equations (3) and (4) there are simple 
relationships between T,, T., Tb and T, which have to 
be incorporated in order to define the control problems. 
These are 

T.= LTs+g-pl’ 
a+P 

(11) 

Tb= 4 a+B 
a+p(l+a) 

T,+ 
a+/?(l+a) 

T, (12) 

and 

T= ‘(‘+‘) T+ a T 

a a+/?(l+a) n a+fi(l+a) m 
(13) 
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where 

2ak, 

a=hlogo 
and p=E. (14) 

It would be mathematically feasible to consider control 
by varying T,, Ti, or T,, but we give here only the 
scheme for control by Tbr the temperature at the outside 
edge of the refractory; this is the case we have studied 
in most detail and it is the most realistic one from a 
practical point of view. 

2.3. The state equations 
It will be found convenient to introduce a non- 

dimensional parameter t, defined by 

t = icz/Wa’. (15) 

To conform with standard terminology in control 
theory, we shall refer to t as the time variable. If the 
overall length of the tube is 1, t ranges from zero to 

ts = KljWa’. (16) 

Using equations (9)-(11) and (15), the state equations 
(6)-(8) can be expressed in the matrix form 

dx 
-= Ax+Bu, 
dt 

where 

x=[Tr,G,...,T,]r, (19) 

u= Tb, (20) 

with x(0) = x0 (given). If u is now changed from uR, 
the perturbed solution x will satisfy the equation 

i = AxiBu, (26) 

with x(0) = x0. If 

then 
y=x-XR and Au = U-U’. 

y = AyfBAu 
with y(0) = 0. 

(27) 

(28) 

Now, with the reference control uR applied, the out- 
put mixed mean temperature T(tr) may be expressed as 

T(t,) = aTxR(tf), 

where aT is an n-vector of weighting constants. The 
aim is to improve the temperature distribution at the 
exit plane by varying Tb but to maintain T(t/) as in 
the reference condition. A suitable cost functional is 
therefore the quadratic criterion 

Jr = 4 f: Sj(T-Xj)21*=,, 
j=l 

= 4 j$l Sj(T-XjR-Yj)2 It=!,.3 

wheresr,sz,..., s, are weighting constants. If we write 

;r-xj” = r/j, (29) 

then this defines the target set in the control problem, 
and 

Jl = :(e-Ym~-Y)lt=l,, 

A=n2 j&E) 2 &+E) : 
1 

( > 

‘2 . ..- 1-g -- 
Bj I 

L 1,g . . . 
Bj Bj ( > I 

I 1 

28. O ;” 

(21) 

and 

B=n’[O ,..., O,s/fl.]T; 

the quantities y and 6 are defined by 

(22) 

Yz2(‘+5)&-(;+2~) (23) 

and 

(24) 

The vector x is called the state vector, u is the control 
variable, A is the system matrix and B is the driving 
matrix. 

2.4. The’cost functional 
Once a suitable reference temperature distribution 

u = uR is defined, equation (17) may be integrated to 
give the reference state x = xR. Thus nR and xR satisfy 

iR = AxR + BuR, (25) 

where S = diag(sJ. This gives a terminal cost functional. 
However, the problem is not well-posed without some 
form of constraint on the control. The cost functional 
Jr is therefore replaced by 

J = :h-YTwrl-Y)l,=,+t f *f 
R(Az#dt. (30) 

0 

The weighting matrix S and the scalar R are free design 
parameters which had to be chosen and adjusted in the 
light of experience and computed results. 

3. ALGORITHMS FOR SOLVING THE 
CONTROL PROBLEM 

3.1. The Matrix-Riccati algorithm 
The first method tried was the continuous Matrix- 

Riccati algorithm which follows directly from the 
application of Pontryagin’s minimum principle to the 
problem posed by equations (28) and (30). Details of 
the solution may be found, for example, in Sage [3]. 
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The matrix equation 

PI= -PA-ATP+PB~-‘BTP 

and the vector equation 

4 = - [A-RR-~B~P]~# 

have to be integrated backwards in time from final 
conditions 

P(c~) = S and {(t,) = Sq(t,). 

The control function is then given by 

Au(r) = - R-‘(r)Br(t) [P(r)y(r) -&)I, 

and the state is obtained by integrating the equation 

ji = Ay+BAu 

forwards in time from the initial condition y(0) = 0. 
Finally, we can obtain 

x=xs+y and u=uR-tAu. 

The first step in the procedure was to assume a 
constant ambient temperature 7” = 20°C and then to 
use a modified system matrix [incorporating equation 
(13) instead of (11) in equation (S)] to calculate the 
corresponding reference temperature uR at the outer 
edge of the refractory and the reference temperature 
distribution xR in the glass. Attention was then turned 
to the application of the Matrix-Riccati algorithm. 

The weighting matrix S was chosen to be of diagonal 
form with equal diagonal elements sii so that the ratio 
R/St2 was the only design parameter which needed to be 
considered. Without loss of generality we could there- 
fore put sii = 100. By decreasing R greater weight was 

put upon the cost of errors in the exit temperature at 
the expense of increased control temperature for which 
greater heating or cooling rates were needed. In most 
of the calculations we took n = 5. 

The algorithm turned out to be useful but not com- 
pletely satisfactory because of difficulties with numeri- 
cal stability and accurate results were obtained only 
for the range of R values greater than 5. The source 
of the difficulty was taken to be due to the very large 
spread ofeigenvalues of the system matrix, which were 
calculated to be -0.852, - 17.91, -58.09 and 
- 114&t&31.43. This made it necessary to use quite 
small time-steps for acceptable accuracy; typically, 180 
time-steps were needed when n = 5 and about 1500 
time-steps when n = 10. By using time-steps of variable 
lengths, it was possible to reduce the number to about 
900 when n = 10, but this was judged to be still too 
many for this approach to be economic for such cases. 
However, whenever results were obtained which over- 
lapped the dynamic programming results, agreement 
was excellent and gave valuable supporting infor- 
mation. 

The problem posed in equations (28) and (30) differs 
only slightly from standard problems by virtue of the 
target set q(tJ. In spite of this, we could not find the 
solution of this particular problem in the literature. 

The closest approach appears to be that of Kleindorfer 
[4] who included linear terms in the cost functional. 
However, the precise equivalence between his algor- 
ithm and that used here is hard to establish because 
of notational difficulties. The main features and results 
are as follows. 

The problem is first converted to one in discrete 
time by dividing the time interval [0, tf] into N equal 
intervals h. The*differential equation (28) is replaced 
by the difference equation 

Yk+l = Cyk+D@k, (31) 

where 

C=I+hA and D=hB. 

The cost fun~ional J is replaced by the sum 
N-l 

(32) 

J = :~J-YN)~WI-YYN)+~ c WtR’, (33) 
k=O 

where 
R’ = hR. 

If we define QN, QN-L and &_k in the following way: 

QN = +h - YAVG+I - YN), 

QN-k = :R’u,$k+Q,-,+I, 

andSN-k=tninQN-kOVer{UN-k,UN-L+I,...,UN-1), 
then we can set up the recurrence relations 

@r&-k = F(N-k)y~-~+G(N-k) (34) 
and 

SN-l&N-k) = :y6-kP(k)yN-k+4Y~-kM(k) 

+~M~(k)y~-k~~z(k). (35) 
where 

F(N-k) = -(R’+DrP(k-l)D)-‘DrP(k--f)C, 

G(N-k) = -:(R’+DrP(k-l)D)-’ 

x [D~(k-l)+M=(k-l)D], 

P(k) = F=(N - k)R’F(N - k) 
+[C+DF(N-k)]rP(k-1) 

x [C+DF(N-k)]. 

M(k) = F’(N-k)R’G(N-k)+ [C+DF(N- k)-jT 

x [P(k-l)DG(N-k)tM(k-l)], 

and 

Z(k)=Z(k-l)+G(N-k)RG(N-k) 

+ G(N - k)DrP(k - 1)DG (N -k) 

+ G(N- k)D=M(k - 1) 
~M*(k-l~DG(N-k~. 

The initial conditions are 

P(0) = S, M(0) = -Sq and Z(0) = qTS~. 

The values of P, M, F and G can then be evaluated 
in the following order 

F(N- I), G(N- l), P(l), M(1); F(N-2), G(N-2), 

P(2), M(2), . . . , F(O), G(O). 

Using the initial condition y. = 0, (AZ& may be evalu- 
ated from 

(A&, = WY, + G(O). 

Then YI = Cya +P(A,u)o, and all subsequent values of 
(AZ& and yk can be determined from equations (31) 
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and (34). The actual state and control variables are 
evaluated from 

x=xR+y and u=uR+Au. 

Practical experience with this algorithm showed it to 
be more robust than the Matrix-Ricca’ti approach. The 
remarkably small number of ten time steps was suffi- 
cient to give acceptably accurate outlet temperature 
profiles. The control temperatures however had a 
spurious oscillation superimposed, the amplitude of 
which decreased rapidly upon increasing the number 
of time-steps. Results were regarded as satisfactory 
when the number of time-steps was increased to 80; 
this number of time-steps was taken for all subsequent 
cases with n = 5. When n = 10, sufficient accuracy was 
achieved with 160 time-steps. 

4. RESULTS 

4.1. Data 
The methods of the foregoing sections were applied 

to a case typical to the glass industry in which glass is 
fed along a circular tube to a machine for pressing 
lens blanks. For good optical qualities it is desirable 
that the temperature of the glass emerging from the 
tube should be as near uniform as possible. The data 
which follows it taken from Leman [5]. 

950- 
----Uncontrolled 

-Control led 

0 I .o 
r/a 

FIG. 2. Glass temperature profiles at the 
exit plane. 

Glass at a temperature of 1100°C was assumed to 
enter a circular tube of radius 26.7mm and of length 
813mm surrounded by a refractory casing of outer 
radius 39.4mm. The fluid velocity at the mid-point of 
the entrance to the tube was taken to be 19.25mm/s. 
The ambient temperature used in calculating the refer- 
ence trajectories was 20°C and the heat-transfer coef- 
ficient (h) was assumed to be 13.8 W/m “C. For the 
refractory, the thermal conductivity was taken to be 
2.09 Wm/m’ “C, and for the glass the following physical 
properties were assumed: 

glass temperature profiles at the tube exit for the un- 
controlled case and several controlled cases are shown 
in Fig. 2. For the uncontrolled case the difference 
between centre line temperatures and those at the outer 
sections of the tube is about 55°C. Even a modest 
amount of control (R = 5)improves upon this, reducing 
the temperature difference to around 17°C. By de- 
creasing R further the temperature difference can be 
made as small as desirable; for example, with R = 0.1 
the difference is only 4°C. 

density = 2.34 km/m3 
thermal conductivity = 20.9 Wm/m2 “C 
thermal diffusivity = 6.25 mm’/s. 

With this data, the P&let number is 82.2 and the tube 
aspect ratio (length/radius) is 30.5. The non-dimen- 
sional length parameter tf may be expressed as 

tf = 
aspect ratio 

P&let number 

and has the value 0.372 in this particular case. 
Since, as stated in Section 3, it was possible to obtain 

a more complete set of results using the dynamic 
programming algorithm the results presented are 
mostly from that source. Results from the Matrix- 
Riccati algorithm are presented in Section 4.3 only for 
comparison purposes. Unless otherwise stated, n = 5. 

The corresponding control temperatures to achieve 
these glass temperature profiles are shown in Figs. 
3(a)-(c). In each figure the broken line represents the 
temperature Tb for the uncontrolled case. All the con- 
trolled cases in comparison show the same pattern 
with extra cooling over the first three-quarters of the 
tube length and extra heating over the last quarter. 
The physical interpretation is that it is necessary to 
cool the central core of the glass initially to achieve 
a temperature closer to the mixed mean temperature 
and then to put heat back into the outer layers in the 
final stages as the glass approaches the exit plane. The 
slight down-turn observed in Figs. 3(a)-(b) are needed 
to prevent the outermost sections being overheated. 
As R is decreased to small values the system operates 
so as to try and eliminate all the minor variations in 
the glass temperature profile. The control temperature 
graph in Fig. 3(c) shows an additional change of 
direction as a result. 

The actual peak temperatures required are regarded 
as being feasible in practice. 

4.3. The error due to radial discretization 
4.2. Comparison of results for difSerent values of R 

The parameter R governs the weighting to be applied 
to the control temperature in the cost functional J The majority of the results are given for the case 
[equation (30)]; smaller values of R allow greater when five radial steps were taken (n = 5). For com- 
variations of the control temperature and this leads to parison, check calculations with ten radial steps give 
better control of the outlet temperature profile. The the results shown in Figs. 4(a) and (b) for the case 
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(a 

(b) R = 1.0. (c)R = 0.1. 
FIG. 3. Refractory temperatures for control, &. (a) R = 5.0. 

R = 5. The larger number of radial steps is seen to 
give the flatter glass temperature profile, the maximum 
discrepancy being about 4°C. Whilst this is appreciable 
from a numerical computation viewpoint it is not 
practically significant and since the smaller number of 
steps provides a useful economy in computation time 
it was used as the basis for all other computations. 

r/a 

(a) 

-. n=5, Uncmlrrollad 
I ;oo- 

. 

1ocn- 

900 - 

Y . P 

1 1 

I I I 1 I I I I I 

0 25 50 75 loo 

Percentage distance along the tube 

(b) 

FIG. 4. The effect of increasing the number of radial steps. 
(a) Glass temperature profiles at the exit plane. (b) Refractory 

temperatures for control, Tb. 

Further, the calculations with n = 5 provide a con- 
servative estimate of what can be achieved by control. 

The control temperatures (Fig. 4b) for the two values 
of n differ only in the details over the last 10 per cent 
of the tube length. 

4.4. Comparison of results from Matrix-Riccati and 
dynamic programming algorithms 

The calculations for n = 5 using the Matrix-Riccati 
algorithm completely support those obtained by 
dynamic programming. The glass temperature profiles 
differ by less than 1S”C (Fig. 5a). The control profiles 
(Fig. 5b) are also nearly identical with slight differences 
occurring only over the last 10 per cent of the tube 
length. 

4.5. The effect of tube length 
For all the results quoted so far the normalized length 

of tube was held constant. To investigate how much 
design flexibility was available in tube length and the 
other parameters involved, calculations for the case 
R = 1.0 were repeated for normalized tube lengths of 
three quarters and one and a quarter times the original 
tube length. In each case the aim was to achieve the 
same mixed mean temperature. 
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(4 
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I 
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With the longer tube the glass exit temperature pro- 
file was very slightly improved compared with the 
standard problem, the difference being about 2°C at 
the centre line (Fig. 6a). The control temperature pro- 
file, shown in Fig. 6(b), is similar in shape to the 
standard profile but is elongated. The control tempera- 
tures are also closer to the reference temperatures. With 
the shorter tube the exit temperature profile was rather 
worse than the standard case (about 5°C difference at 
the centre line). The control temperature profile is 
significantly compressed and more extreme control 
temperatures are demanded. In particular, along the 
first part of the tube the control temperatures are lower 
than those in the standard case by up to 350°C. 

It should be borne in mind however that the final 
mixed mean temperature 7 has been maintained con- 
stant in this comparison. In the three-quarter-length 
solution, extra cooling is needed to bring down the 
average temperature to a value below that which would 
occur naturally at the exit of the shorter pipe without 
control. 

4.6. Alternative glass exit temperature projiles 
As an extension of the work, the target set was 

altered. In many processes it is desirable at exit for 

(b) 

the temperature at the walls to be perhaps 50°C higher 
than at the centre line. To test the ability of the 
program to achieve this sort of profile the target set 
was adjusted. In the new problem the approximately 
parabolic profile of the uncontrolled case had to be 
converted to a similarly shaped profile in the controlled 
case with the outside edge temperature higher than the 
centre-line temperature. 

The results shown in Fig. 7(a) show that this was 
achieved fairly successfully though at the expense of 
considerably higher control temperature variations as 

seen in Fig. 7(b). These could be made less extreme 
of course by lengthening the tube as discussed in 
Section 4.4. These results clearly demonstrate the 
feasibility of achieving a variety of temperature profiles 
to an acceptable degree of accuracy. 

An interesting observation is that the control tem- 
peratures for this case (measured relative to the un- 
controlled case) are precisely twice those needed for 
the original problem when we were aiming for the flat 
profile. The reason for this becomes apparent upon 
inspection of equation (30). The new target set corre- 
sponds to a doubling of the original ‘I. If y and Au 
are simultaneously doubled then they clearly provide 
the optimum for the revised problem. 
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FIG. 7. Results for the revised target set. (a) Glass 
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This argument can be extended. The solution for a 
whole class of target sets of the same shape as the 
original uncontrolled profile but containing a multi- 
plicative factor can by a suitable scaling immediately 
be inferred from the results for just one value of the 
multiplicative factor. 

4.1. Heating rates 
In the results presented so far, the control activity 

has been defined in terms of the temperature 5 at the 

outer edge of the refractory. However, a parameter 
which is of greater practical importance is the heating 
rate, since control is often exercised by heating elements 
embedded in the refractory casing. The heating rate 
corresponding to a given temperature distribution G 
is readily obtained by calculating the additional 
amount of heat which must be generated (or extracted) 
to raise (or lower) the temperature at the outer edge of 
the refractory from the value it would have had in the 
absence of control. 

To give an indication of the return that can be 
achieved for a given expenditure of power, the power 
consumed may be correlated with 

~=[~~~(~-T)‘dr]l~[~~r(=-f)‘d;i: (36) 

where the subscripts C and R refer to the controlled 
and uncontrolled values, respectively. The index I is a 
measure of the extent to which the temperature profile 
at the exit departs from the required profile; the value 
I = 1 corresponds to no control, whilst I = 0 represents 
the ideal condition of perfect control. 

0.6 

I 0.5- 

0.4- 

0.3 - 

0.2 - 

1 

O,t_._--- 
0 2 3 4 5 6 7 6 

Power, kW 

FIG. 8. Variations of index of performance, I, with power 
consumed. 

Figure 8 shows the results corresponding to the 
temperature profiles of Figs. 3(a)-(c). This clearly 
indicated that for this problem useful control involves 
about 3 kW of power, and if this power is doubled 
to 6 kW an almost completely flat temperature profile 
can be achieved. An interesting incidental observation 
is that although the Matrix-Riccati method was 
successful only in the range R 2 5, this represents a 
good part of the region where control of the outlet 
temperature profile is significant. 
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5. CONCLUDING COMMENTS equations. Many other methods exist in the literature 

This problem was considered as part of a more with improved characteristics and a study of these could 

extensive study of the dynamic control of glass flowing be fruitful. 

down a pipe. A complicating feature, not dealt with 
in the present paper, is that in the case of molten glass 
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for dealing with this aspect of the problem has been 
developed. The next stage will be to consider dynamic 

control to take account of fluctuations in operating 
conditions, external disturbances, etc. Problem of 

1, 

observability and state reconstruction will feature at 2. 

this stage. 
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CONTROLE DE LA TEMPERATURE D’UN ECOULEMENT DE POISEUILLE AVEC 
APPLICATION PARTICULIERE A UN ECOULEMENT DE VERRE FONDU 

R&urn&Le problkme consid&t est celui du contrble de la distribution de temptrature dans un fluide 
en tcoulement laminaire ttabli dans un tube circulaire. On suppose qu’un dispositif appropriC de 
chauffage et de refroidissement est placi dans le manchon rkfractaire enveloppant le tube et que la 
tempkrature moyenne du fluide doit 6tre rtduite (ou augment&e) d’une quantitt dkterminee durant son 
passage dans une section de longueur don&e. L’aspect essentiel du probleme rkside dans la condition 
suppltmentaire portant sur la distribution de tempkrature dans la section finale qui doit itre contrblke 
afin d’obtenir la distribution d&sir&e. 

Le probltme est r&olu par application de la thkorie du contrble optimal. Une fonctionnelle de cotit 
quadratique est construite qui comprend un terme mesurant Wart de l’approximation obtenue par 
rapport a la distribution de tempt+rature finale d&sir&e et un terme de contrainte permettant d’irviter des 
tempkratures du refractaire irrCalisables. La solution est obtenue par utilisation d’un algorithme matriciel 
de Riccati ainsi que par programmation dynamique. 

Des rtsultats numtriques sont prCsentts dans le cas particulier d’un ttcoulement de verre fondu. On a 
track les distributions types de tempkrature B la sortie et dans le rbfractaire et on montre les avantages 
du contr8le de tempkrature. Les rksultats font apparaitre clairement avec quelle approximation la 

distribution de temptrature dtsirte peut &tre atteinte, pour une puissance disponible donnke. 

DIE REGELUNG DER TEMPERATUR EINER POISEUILLE-STROMUNG IN 
BESONDEREM HINBLICK AUF DIE STRC)MUNG VON GESCHMOLZENEM GLAS 

Zusammenfassung-Es wird das Problem der Regelung der Temperaturverteilung eines Fluides bei voll 
ausgebildeter laminarer RohrstrGmung untersucht. Es wird angenommen, da13 geeignete Heiz- und 
Kiihlvorrichtungen in einem hitzebestiindigen Gehiiuse urn das Rohr vorhanden sind und daB beim Durch- 
striimen einer bestimmten Rohrstrecke die mittlere Temperatur des Fluides urn einen bestimmten Betrag 
gesenkt (oder erhiiht) werden solI. Das Hauptmerkmal des Problems liegt in der zusitzlichen Forderung, 
da13 zur Erreichung der gewiinschten Temperaturverteilung die Verteilung im Austrittsquerschnitt 
ebenfalls geregelt werden muI3. 

Das Problem wird mit Hilfe der Optimal-Regeltheorie gel&t. Es wird eine quadratische Funktion 
aufgestellt, die einen Term enthllt, der die Anpassung an die gewiinschte Austrittstemperatur-Verteilung 
erfal3t und einen Begrenzungsterm, der unrealistische Temperaturen im Heizelement ausscheidet. Die 
Liisung wird durch den Matrix-Riccati-Algorithmus und durch dynamisches Programmieren erhalten. 

Es werden numerische Ergebnisse fiir eine spezielle StrGmung von geschmolzenem Glas angegeben. 
Die typischen Temperaturen im Austrittsquerschnitt und in der Heizstrecke werden dargestellt und die 
Vorteile der Regelung aufgezeigt. Die Ergebnisse zeigen deutlich, bis zu welchem Ausmal3 die gewiinschte 

Temperaturverteilung bei gegebener Leistung erreicht werden kann. 
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TEMnEPATYPHbI~ KOHTPOjIb TEYEHMX l-IYA3Et;mX AJI5I YACTHOTO 
CJIYYAS l-IOTOKA PACn~AB~~HHOrO CTEKJIA 

Anuozwtn - PaccMarpHsaeTcx 3anaya 0 perynapoaamirt pacnpeaenemir TeMnepaTypbt mnnKocTn 
llpw IlOJIHOCTbiO pa3BHTOM JlaMEfHapHOM TeYeHHU B KOJIb!JeBOfi Tpy6e. ~pe,!UIOJlaraeTCX, 'IT0 B 

~apOIIpO'lHOh4 YeXJIe, OKpyXCaIOIUeM TPY6Y, UMeIOTCIl COOTBeTCTByIOLLWe yCTpOikTBa AJUI Harpe- 

BanRR H OXJIa;acAeHWl II 'IT0 IIpH lIpOXOXCneH&iH 'Iepe3 yWiCTOK Tpy6bI 3aAaHHOii AJUiHbI CpeAHflfl 

Tewiepazypa xcsi,i~~ocTx nonxcrra cmixafws (ana noBblmaTbcst) Ha onpenenewyfo Benwimiy. 
OCHOBHaSl vO6eHHOCTb 3liAaYZi 3aKnZOoY2leTCX B AO~O~H~TenbHOM Tpe6OBaHEiU 0 pery~~pOBaH~n 

pac~~AeAeH~~ TeMneparypbI. B KoHewroM cegeHsiW Ans AocTwewis menaeMor0 pacnpene~eH~~. 
%ifiaqa peUIaeTCR C IIOMOWbto TeOpHH OilTWMaJIbHOTO pWyJlUpOBaHUR EOJIyreH KBaApaTki'fHb1i.i 

qeneeofi @yHKU~0H~,BKn~)~af0~~il sneH,KoTopbISi 0npeAenneT 6AIi30CTb flpo6eoro w 3anaHHoro 

paCllpeAeJleHBR TeMIIepaTypbI Ha BXOAe, a TPKxe WIeH, IIO3BOJIXEOIWi4 BCKJIIOYnTb HepeaJlbHhIe 

Tekineparypbr B orweynope. PeueHkie nonyreH0 c nordoubm anropaTMa MaTpHKCa-PI(KKaTM n 

zwiaMwecKor0 nporpaMhwpoBaHHs. II~ISB~AS~TCSI pe3ynbTaTbl Anrr YacTHoro cnyyan pacnnaanew 

Horo cTeKna. IIoKasawbI TwnwHbIe pacnpeAeneHws TeMriepaTyp Ha BxoAe li B orweynope H npo- 

AeMOHCTp~~~Hbl ~~~y~~Ba ~ry~~pO~H~~. Pe3yXbTaTbI YeTKO IIOKa3bIBaK)T CTeneHb 

AocT~~eH~~Heo6xoAnMoro TeM~epaTypHoro pacnpeAeneHuR ~p~3aAaHHo~ MOLUHOCTII. 
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