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Abstract—The problem considered is that of controlling the temperature distribution of a fluid in fully
developed laminar flow through a circular tube. It is assumed that suitable heating and cooling arrange-
ments are available in a refractory casing surrounding the tube and that in its passage through a section
of the tube of given length the mean temperature of the fluid has to be reduced (or increased) by a
specified amount. The main feature of the problem lies in the additional requirement that the temperature
distribution at the final cross-section must also be controlled to achieve some desired distribution. The
problem is solved by application of optimal control theory. A quadratic cost functional is set up which
includes a term measuring the closeness of fit to the desired exit temperature distribution and a constraint
term to avoid unrealistic temperatures in the refractory. The solution is obtained by use of a Matrix—
Riccati algorithm and also by dynamic programming. Numerical results are presented for a particular
fiow of molten glass. Typical exit and refractory temperature distributions are exhibited and the benefits
of control are demonstrated. The results show clearly the extent to which the desired temperature
distribution can be achieved for given available power,

NOMENCLATURE Greek symbols

A, system matrix; a¥,  weighting constants for T evaluation;
B, driving matrix; a, . .
a, inner radius of refractory; 8, constants defined in equation (14);
b, outer radius of refractory; B,  1—(r}a?);
C, discrete system matrix, equation (32); . .
D, discrete d);iving matrix,, eccl;uati on ((32)); g” constants defined in equations (23} and (24);
F} defined in equations (34) and (35); ¢  defined in Section 3.1;
G’ Nis T— Xf.
h, heat-transfer coefficient;
I, index, defined in equation (36); Superscripts
k, glass thermal conductivity; C, controlled;
ky,  refractory thermal conductivity; R,  reference or uncontrolled.
A tube length;
M,  defined in equation (35); Subscripts
P, solution of Matrix—Riccati equation i inlet;

{section 3.1 or equation (35)]; 1 final,
R, control weighting parameter, equation (30);
7, radial position;
S, target set weighting matrix; L. INTRODUCTION
sy,  diagonal elements of §; THERE are many industrial processes in which it is
T, temperature; required to heat or cool a fluid as it flows through a
T;,  temperature at centre line of jth shell; tube. Often, it is the increase or decrease of the mean
T, temperature at inner and outer surfaces cross-sectional temperature which is of interest, but
T, of refractory; there are cases in which it is also necessary to exercise
T., ambient temperature; some control over the temperature distribution, par-
T, mixed mean temperature; ticularly that at the tube exit. Such a situation arises
t, normalized distance along tube; in the glass industry, for example, where glass nearing
u, control variable, T;; the final stages of certain manufacturing processes
w, centre-line velocity; must be brought to a temperature as near uniform as
wir, z), velocity; possible to prevent unwanted inhomogeneities in the
X, state vector, [Ty, ..., T,]%; finished article,
Y x—x®; This paper is concerned with setting up and analysing
Z, defined in equations (34) and (35); a simple model of a problem of this kind. Essentially,
z, distance along tube. we shall consider a fluid flowing through a circular
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tube in which it is required to reduce the overall tem-
perature by a specified amount and in such a way that
the final temperature profile is as near uniform as
possible. It is, perhaps, fairly clear intuitively that with
no constraints and with the expenditure of sufficient
effort, in the form of power input and output at
appropriate positions along the wall of the tube, it
should be possible to exercise control of the exit tem-
perature profile to any specified degree. However, in
reality there are obviously physical constraints on the
temperatures which the system can withstand and
limitations on the available power. Our main objective
is to determine the optimum exit profile that can be
achieved under certain operating conditions and the
corresponding power consumed. Using a suitable
measure of the nearness of the final profile to that
desired, we can then investigate the variation of the
return that can be achieved as the power available is
varied.

The problem that we pose falls within the realm of
the theory of control of distributed parameter systems.
This is a very rapidly expanding area of control theory
in which the study of heat flow problems has featured
strongly since Butkovsky’s early work on temperature
distribution in a moving flat plate (see Butkovsky [1],
for example). Much of the published work is concerned
with the simple one-dimensional heat flow equation
and, so far as we are aware, the coupled problem of
the control of the temperature distribution in a fluid
with spatial variations of velocity and temperature
dependent viscosity has not been solved. A fairly recent
survey of the literature is given by Robinson [2].

The mathematical analysis is based upon a simple
model of Poiseuille flow and is aimed at bringing the
problem into a form suitable for application of two
standard techniques in control theory, namely the
Matrix—Riccati formulation and the method of dynamic
programming. In practice, dynamic programming
proves to be the superior method as it is capable of
handling a wider range of operating conditions. How-
ever, both methods will be discussed since it is useful
to understand the limitations of the Matrix—Riccati
method in the context of this problem and it also
provides a valuable check on the accuracy of the results
obtained by dynamic programming in the range where
both are applicable.

2. MATHEMATICAL MODEL

2.1. Flow and heat transfer equations

Consider an incompressible fluid in steady laminar
flow along a horizontal circular tube of radius a. The
wall of the tube is assumed to be of negligible thickness
and the tube is surrounded by a cylindrical shell of
uniform insulating material of inner radius a and outer
radius b. The configuration is shown in Fig. 1(a); rand z
are the radial and axial coordinates, respectively, with
z increasing in the direction of the flow.

Let the fluid entering the cross-section at z = 0 have
a uniform temperature T;. Heat is lost through the
insulator and hence at all cross-sections z > 0 the
average fluid temperature will be less than 7;. The
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FiG. 1. (a) Cylindrical polar coordinates.
(b) Ilustration of radial steps.

“average temperature” may be defined in several ways,
but it is convenient to use the mixed mean temperature

J wTrdr
AN

a ? (1)
J wrdr
0

where wis the axial component of fiuid velocity. Clearly
T(0) = T,. At the exit plane z = z;, let

T(Z,) = Tf.

T(z) =

For given flow and heat-transfer conditions the cross-
section z =z, at which T;—T; reaches some given
value can be found. We wish to determine conditions
under which, over the length z,, a specified temperature
drop T,—T; can be achieved, with the additional
requirement that the cross-sectional temperature pro-
file at z = z, should be as near uniform as possible.
To complete the formulation of the problem it is
necessary to specify:
(i) flow conditions;
(ii) heat-transfer conditions;
(iii) some constraint on allowable temperatures (for
practical purposes).

For the flow, the case which is of greatest practical
interest for a fluid of constant properties is the
Poiseuille distribution

r2
(e 2) = W(l—;), @)

where W is a constant. This profile will be used through-
out the present paper.

Let T,(z) and T;(z) be the temperatures at r = a and
r=>b, and let the ambient temperature at large dis-
tances from the tube be T,,. Neglecting conduction in
the axial direction and denoting by k, the conductivity
of the refractory which occupies the region a <r < b,
we find from an elementary solution of the heat-
conduction equation that the rate of flow of heat
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through the refractory, per unit length of tube, is
2nk, (T, — Ty)/log(b/a).

If the rate of flow of heat to the surroundings is
h(T,— T,), per unit length of tube, where A is a heat-
transfer coefficient, then for heat balance in the steady
state

T~ T,) = 2k (T, — T;)/log(b/a). (3)

Denoting the thermal conductivity of the fluid by k,
the rate of heat transfer from the fluid to the refractory,
per unit length of tube is

—2nak(0T/0r)=a,
where T is the fluid temperature. Hence we also have
h(Ty—Ty,) = —~2nak(0T/0r),=,. 4)

In the fluid, the temperature is assumed to satisfy
the differential equation

8T Kk 8 < 6T)
—\r—=1 )
62 ror\ or
where k is the thermal diffusivity. This differential
equation, together with conditions (3) and (4) and the
inlet condition T = T;, is sufficient to determine the
temperature distribution at any cross-section. There is
no simple analytical solution and the problem is most
conveniently solved numerically. We note that T,(z)
and T;(z) will be calculated as part of the solution.
Suppose that the plane z = z, at which a specified
mixed mean temperature 7T is achieved has been found,
assuming a reference value for the ambient temperature
T,. Let the corresponding temperature at r=b be
T:®. We suppose that we have at our disposal means
of controlling the temperature T, along the wall of the
refractory, and the problem s to determine the distribu-
tion T{® of Tj(z) such that, with the same inlet condition
as before (T = T; at z = 0), the same mixed mean tem-
perature T is achieved at z = z, but the temperature
distribution across the plane z = z; is as near uniform
as possible. It is convenient to leave until later a state-
ment of the constraints which are imposed on T to
avoid unrealistic temperatures.

2.2. Discretization scheme

The basic differential equation (5) can be integrated
by various numerical methods, but for the control
problem the following finite difference scheme is con-
venient.

Divide the tube of radius a into n coaxial shells each
of thickness Aa = a/n, the jth shell being defined by

(—Damn<r<jam (j=1,2,...,n).
Let T; be the temperature at the mid-point
r=r;=(j—%Aa

of the jth shell [Fig. 1(b)]. For 2 € j < n— 1, thefirst and
second derivatives of T at » = r; may be approximated
by

T _Tv1—Tj-y

or 2Aa
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and
T  T1—2T+ Ty
orr (Aa)?
Using these in the differential equation (5) leads to
dT;
w(rja Z) Ezl

K Aa Aa
- = T+{1-20T,
(Aa)z[(HZr,-) 12 +( 2r,> ” ‘]

2<j<gn=1) (6)

At the axis, 0T/0r = 0, and hence for j =1 the differ-
ential equation (5) becomes

dTy 0T
w(ry, z)—— =K
Z r=ry

ot
oT oT
= Aa [( or ),:,2 a (E),:,J
k Th-T
~ (hay En @
When j = n, we may take
oT  T,—
o Aa/2
and
7 ala).. (&) ]
or? O Jo=r, \OF Jr=t,_,

Hence (5) becomes

d7,
Wira,2) -

z
K Aa 5 2Aa
=@)~2[Z<l+7;>72—<2 rn)T—l—zT } (8)

In the case considered here, the fluid velocity is taken
to have the Poiseuille distribution given by (2). Hence
the convection terms in equations (6), (7) and (8) can
be replaced by

dT; dT; .
W(’j,Z)E—Wﬁj—&;, Gg=L2,....,m) (9
where By =1—(}/a%. (10)

Based upon equations (3) and (4), there are simple
relationships between T, T,, T, and T,, which have to
be incorporated in order to define the control problems.
These are

a B
Ta=a+B77,+ +ﬁ (1
_ af a+f
b= B " Tar gl = 1
and
_ B(l+a) o
Loy T Rty T s S
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where with x(0) = X, (given). If u is now changed from u*,
dmk dmak the perturbed solution x will satisfy the equation
=_—T = 4 ,

® hlog(b/a) B hAa (14) x = AXx + Bu, (26)
It would be mathematically feasible to consider control with x(0) = xo. If
by varying T, T; or T, but we give here only the b y=x-x8 and Au=u—uf, 27
scheme for control by T;, the temperature at the outside then
edge of the refractory; this is the case we have studied y=Ay+BAu (28)
in most detail and it is the most realistic one from a  with y(0) = 0.

practical point of view.

2.3. The state equations
It will be found convenient to introduce a non-

dimensional parameter ¢, defined by
t = xz/Wa?. (15)

To conform with standard terminology in control
theory, we shall refer to t as the time variable. If the
overall length of the tube is I, t ranges from zero to

ty = xl/Wa?. (16)
Using equations (9)—(11) and (15), the state equations

Now, with the reference control u® applied, the out-
put mixed mean temperature T(t;) may be expressed as

T(tf) = GTXR(II),

where a” is an n-vector of weighting constants. The
aim is to improve the temperature distribution at the
exit plane by varying T, but to maintain T(z,) as in
the reference condition. A suitable cost functional is
therefore the quadratic criterion

n

Ji=1% Z Sj(T“—Xj)2|r=zf

[
It
—-

n
=% Z Sj(T—xf_yj)letf,

(6)—(8) can be expressed in the matrix form =t
dx where sy, 53, ..., S, are weighting constants. If we write
— = Ax+Bu, (17) TexR = p. 29
dt Xj = Mj» (29)
where then this defines the target set in the control problem,
x=[T.Ts.... T;]% 19) @nd
[T 1] 19 Iy = 4=y S0 =Y)l-ss
u=T, (20)
1 1 ]
1 0 1
251 zﬁl
1 Aa -2 1 Aa
AR A AN
Az nt 2 2 2 2 2 : 1)
1 ( Aa) 2 1 ( Aa)
—1-=) == {1+=)...
B\ 2 B BN 2
: 1 .
— 0 =
i 25, B
and
. here S = diag(s;). This gives a terminal cost functional.
B =n?[0,...,0,6/8.]"; 2 ¥ 8LS; , :
. [ /8] @2) However, the problem is not well-posed without some
the quantities y and 6 are defined by form of constraint on the control. The cost functional
A 5 A J1 is therefore replaced by
v=2<1+—a)—§—ﬁ—<§+2 ra) @) t
n /o " J= %(n—y)TS(n—y)|,=.,+%f R(Buy*dr. (30)
and o
Aa\ « The weighting matrix S and the scalar R are free design
0=2{1+ PYITY (24) parameters which had to be chosen and adjusted in the

The vector x is called the state vector, u is the control
variable, A is the system matrix and B is the driving
matrix.

2.4. The cost functional

Once a suitable reference temperature distribution
u = uR is defined, equation (17) may be integrated to
give the reference state x = x®. Thus u* and x*® satisfy

%R = Ax®+Bu®, (25)

light of experience and computed results.

3. ALGORITHMS FOR SOLVING THE
CONTROL PROBLEM

3.1. The Matrix—Riccati algorithm

The first method tried was the continuous Matrix—
Riccati algorithm which follows directly from the
application of Pontryagin’s minimum principle to the
problem posed by equations (28) and (30). Details of
the solution may be found, for example, in Sage [3].
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The matrix equation

and the vector equation
&= -[A-BR™'B'P]"§

have to be integrated backwards in time from final
conditions

P(t;) =S and &(ty) = Snlts).
The control function is then given by
Au(t) = —R™H OB @) [P()y(t) - &(1)],
and the state is obtained by integrating the equation
¥y =Ay+BAu

forwards in time from the initial condition y(0) = 0.
Finally, we can obtain

x=xF+y and u=uR+Au

The first step in the procedure was to assume a
constant ambient temperature T,, = 20°C and then to
use a modified system matrix [incorporating equation
(13) instead of {11) in equation (8)] to calculate the
corresponding reference temperature ® at the outer
edge of the refractory and the reference temperature
distribution x® in the glass, Attention was then turned
to the application of the Matrix—Riccati algorithm.

The weighting matrix S was chosen to be of diagonal
form with equal diagonal elements s;; so that the ratio
R/s;; was the only design parameter which needed to be
considered. Without loss of generality we could there-
fore put s; = 100. By decreasing R greater weight was
put upon the cost of errors in the exit temperature at
the expense of increased control temperature for which
greater heating or cooling rates were needed. In most
of the calculations we took n = 5.

The algorithm turned out to be useful but not com-
pletely satisfactory because of difficulties with numeri-
cal stability and accurate results were obtained only
for the range of R values greater than 5. The source
of the difficulty was taken to be due to the very large
spread of eigenvalues of the system matrix, which were
calculated to be -—0852, —1791, —58.09 and
—114.64+ 31.43, This made it necessary to use quite
small time-steps for acceptable accuracy; typically, 180
time-steps were needed when n=5 and about 1500
time-steps when n = 10. By using time-steps of variable
lengths, it was possible to reduce the number to about
900 when n = 10, but this was judged to be still too
many for this approach to be economic for such cases.
However, whenever results were obtained which over-
lapped the dynamic programming results, agreement
was excellent and gave valuable supporting infor-
mation.

3.2. Discrete dynamic programming approach

The problem posed in equations (28) and (30) differs
only slightly from standard problems by virtue of the
target set g(t,). In spite of this, we could not find the
solution of this particular problem in the literature.
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The closest approach appears to be that of Kleindorfer
[4] who included linear terms in the cost functional.
However, the precise equivalence between his algor-
ithm and that used here is hard to establish because
of notational difficulties. The main features and results
are as follows.

The problem is first converted to one in discrete
time by dividing the time interval [0, t;] into N equal
intervals h. The' differential equation (28) is replaced
by the difference equation

S QINCICHLL LAl

Vi+1 = Cypt+Du, (31
where
C=I+hA and D=1#B 32)
The cost functional J is replaced by the sum
N-1
J =3a—yn)"S@~yn)+1 Y (AuiR,  (33)
k=0

where
R’ = hR.

If we define Qn, Qn-1 and Sy—y in the following way:
Ox = 31—y Sn(n—yn),
On-x = 3R U+ On-ss1,
and SN‘k = min QN—k over {Uwuk, UN—IH-h N Un..g},
then we can set up the recurrence relations
Auly—k = F(N—k)yn-++ G(N—k) (34)
and
Sn-1(yn-1) = 3YN -1 PK)YN -1+ 3¥R - M(K)
HM Kyn-o+3ZK). (35)
where
F(N—=k)= — (R +D"Pk—-1)D) 'DTP(k - 1)C,
G(N —k)= 3R +D"P(k—1)D)}
x [D™™(k-1}+M7(k—1)D],
P(k) = FT(N ~k)RF(N —k)
+[C+DF(N k)] Pk —1)
x [C+DF(N -k},
M(k) = FI(N-K)R'G(N —k)+[C+DF(N—k)]"
x [P(k—1)DG(N —k)+ M(k—1}],
and
Zk) = Z{k—1)+ G(N—k)RG(N -k}
+G(N ~kDTP(k— DG (N —k)
+G(N—I)D™M(k~1)
+MTk-1DG(N-k).
The initial conditions are
PO)=S, M({0) = —Sy and Z(0)= 5" Sy.
The values of P, M, F and G can then be evaluated
in the following order
F(N—1), G(N 1), P(1), M(1); F(N —2), GIN-2),
P(2), M(2), ..., F(0), G(0).
Using the initial condition yo = €, {Au)o may be evalu-

ated from
(Au)o = F(0)yo + G(0).

Then y; = Cys+P{Au)o, and all subsequent values of
(Au), and y, can be determined from equations (31)
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and (34). The actual state and control variables are
evaluated from

x=xR+y and u=uR+Au

Practical experience with this algorithm showed it to
be more robust than the Matrix—Riccati approach. The
remarkably small number of ten time steps was suffi-
cient to give acceptably accurate outlet temperature
profiles. The control temperatures however had a
spurious oscillation superimposed, the amplitude of
which decreased rapidly upon increasing the number
of time-steps. Results were regarded as satisfactory
when the number of time-steps was increased to 80;
this number of time-steps was taken for all subsequent
cases with n = 5, When » = 10, sufficient accuracy was
achieved with 160 time-steps.

4. RESULTS

4.1. Data

The methods of the foregoing sections were applied
to a case typical to the glass industry in which glass is
fed along a circular tube to a machine for pressing
lens blanks. For good optical qualities it is desirable
that the temperature of the glass emerging from the
tube should be as near uniform as possible. The data
which follows it taken from Leman [5].

Glass at a temperature of 1100°C was assumed to
enter a circular tube of radius 26.7mm and of length
813mm surrounded by a refractory casing of outer
radius 39.4 mm. The fluid velocity at the mid-point of
the entrance to the tube was taken to be 19.25 mm/s.
The ambient temperature used in calculating the refer-
ence trajectories was 20°C and the heat-transfer coef-
ficient (k) was assumed to be 13.8 W/m°C. For the
refractory, the thermal conductivity was taken to be
2.09 Wm/m? °C, and for the glass the following physical
properties were assumed:

density = 2.3dkm/m3
thermal conductivity = 20.9 Wm/m? °C
thermal diffusivity = 6.25 mm?/s.

With this data, the Péclet number is 82.2 and the tube
aspect ratio (length/radius) is 30.5. The non-dimen-
sional length parameter ¢, may be expressed as

aspect ratio

fp=———
7™ Péclet number

and has the value 0.372 in this particular case.

Since, as stated in Section 3, it was possible to obtain
a more complete set of results using the dynamic
programming algorithm the results presented are
mostly from that source. Results from the Matrix—
Riccati algorithm are presented in Section 4.3 only for
comparison purposes. Unless otherwise stated, n = 5.

4.2. Comparison of results for different values of R

The parameter R governs the weighting to be applied
to the control temperature in the cost functional J
[equation (30)]; smaller values of R allow greater
variations of the control temperature and this leads to
better control of the outlet temperature profile. The
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1020

T
~
~
~
-
-
-
i

1010

/
ool | '
/ \
/ !
\
seoly ¥
Y
——==—Uncontrolled
950 |-
————~Controlled
0 10
r/a
F16G. 2. Glass temperature profiles at the
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glass temperature profiles at the tube exit for the un-
controlled case and several controlled cases are shown
in Fig. 2. For the uncontrolled case the difference
between centre line temperatures and those at the outer
sections of the tube is about 55°C. Even a modest
amount of control (R = S)improves upon this, reducing
the temperature difference to around 17°C. By de-
creasing R further the temperature difference can be
made as small as desirable; for example, with R = 0.1
the difference is only 4°C.

The corresponding control temperatures to achieve
these glass temperature profiles are shown in Figs.
3(a)—(c). In each figure the broken line represents the
temperature T, for the uncontrolled case. All the con-
trolled cases in comparison show the same pattern
with extra cooling over the first three-quarters of the
tube length and extra heating over the last quarter.
The physical interpretation is that it is necessary to
cool the central core of the glass initially to achieve
a temperature closer to the mixed mean temperature
and then to put heat back into the outer layers in the
final stages as the glass approaches the exit plane. The
slight down-turn observed in Figs. 3(a)~(b) are needed
to prevent the outermost sections being overheated.
As R is decreased to small values the system operates
so as to try and eliminate all the minor variations in
the glass temperature profile. The control temperature
graph in Fig. 3(c) shows an additional change of
direction as a result.

The actual peak temperatures required are regarded
as being feasible in practice.

4.3. The error due to radial discretization

The majority of the results are given for the case
when five radial steps were taken (n = 5). For com-
parison, check calculations with ten radial steps give
the results shown in Figs. 4(a) and (b) for the case
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R = 5. The larger number of radial steps is seen to
give the flatter glass temperature profile, the maximum
discrepancy being about 4°C. Whilst this is appreciable
from a numerical computation viewpoint it is not
practically significant and since the smaller number of
steps provides a useful economy in computation time
it was used as the basis for all other computations.
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F1G. 4. The effect of increasing the number of radial steps.
(a) Glass temperature profiles at the exit plane. (b) Refractory
temperatures for control, 7.

Further, the calculations with » =5 provide a con-
servative estimate of what can be achieved by control.

The control temperatures (Fig. 4b) for the two values
of n differ only in the details over the last 10 per cent
of the tube length.

4.4. Comparison of results from Matrix-Riccati and
dynamic programming algorithms

The calculations for n = 5 using the Matrix-Riccati
algorithm completely support those obtained by
dynamic programming. The glass temperature profiles
differ by less than 1.5°C (Fig. 5a). The control profiles
(Fig. 5b) are also nearly identical with slight differences
occurring only over the last 10 per cent of the tube
length.

4.5. The effect of tube length

For all the results quoted so far the normalized length
of tube was held constant. To investigate how much
design flexibility was available in tube length and the
other parameters involved, calculations for the case
R = 1.0 were repeated for normalized tube lengths of
three quarters and one and a quarter times the original
tube length. In each case the aim was to achieve the
same mixed mean temperature.
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F1G. 5. Comparison between dynamic programming and
Matrix—Riccati solutions. (a) Glass temperature profiles at
the exit plant, (b) Refractory temperatures for control, ;.

With the longer tube the glass exit temperature pro-
file was very slightly improved compared with the
standard problem, the difference being about 2°C at
the centre line (Fig. 6a). The control temperature pro-
file, shown in Fig. 6(b), is similar in shape to the
standard profile but is elongated. The control tempera-
tures are also closer to the reference temperatures. With
the shorter tube the exit temperature profile was rather
worse than the standard case (about 5°C difference at
the centre line). The control temperature profile is
significantly compressed and more extreme control
temperatures are demanded. In particular, along the
first part of the tube the control temperatures are lower
than those in the standard case by up to 350°C.

1t should be borne in mind however that the final
mixed mean temperature 7 has been maintained con-
stant in this comparison. In the three-quarter-length
solution, extra cooling is needed to bring down the
average temperature to a value below that which would
occur naturally at the exit of the shorter pipe without
control.

4.6. Alternative glass exit temperature profiles
As an extension of the work, the target set was
altered. In many processes it is desirable at exit for
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F1G. 6. The effect of varying tube length. (a) Glass tempera-
ture profiles at the exit plane. (b) Refractory temperatures
for control, T;.

the temperature at the walls to be perhaps 50°C higher
than at the centre line. To test the ability of the
program to achieve this sort of profile the target set
was adjusted. In the new problem the approximately
parabolic profile of the uncontrolled case had to be
converted to a similarly shaped profile in the controlled
case with the outside edge temperature higher than the
centre-line temperature.

The results shown in Fig. 7(a) show that this was
achieved fairly successfully though at the expense of
considerably higher control temperature variations as
seen in Fig. 7(b). These could be made less extreme
of course by lengthening the tube as discussed in
Section 4.4. These results clearly demonstrate the
feasibility of achieving a variety of temperature profiles
to an acceptable degree of accuracy.

An interesting observation is that the control tem-
peratures for this case (measured relative to the un-
controlled case) are precisely twice those needed for
the original problem when we were aiming for the flat
profile. The reason for this becomes apparent upon
inspection of equation (30). The new target set corre-
sponds to a doubling of the original 5. If y and Au
are simultaneously doubled then they clearly provide
the optimum for the revised problem.
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This argument can be extended. The solution for a
whole class of target sets of the same shape as the
original uncontrolled profile but containing a multi-
plicative factor can by a suitable scaling immediately
be inferred from the results for just one value of the
multiplicative factor.

4.7. Heating rates
In the results presented so far, the control activity
has been defined in terms of the temperature T, at the
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outer edge of the refractory. However, a parameter
which is of greater practical importance is the heating
rate, since controlis often exercised by heating elements
embedded in the refractory casing. The heating rate
corresponding to a given temperature distribution T,
is readily obtained by calculating the additional
amount of heat which must be generated (or extracted)
to raise (or lower) the temperature at the outer edge of
the refractory from the value it would have had in the
absence of control.

To give an indication of the return that can be
achieved for a given expenditure of power, the power
consumed may be correlated with

I= [jar(T- T) dr:r/['r rH(T—T)? drT (36)
0 e/ Lo R

where the subscripts C and R refer to the controlled
and uncontrolled values, respectively. The index I is a
measure of the extent to which the temperature profile
at the exit departs from the required profile; the value
I = 1 corresponds tono control, whilst I = 0 represents
the ideal condition of perfect control.
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F1G. 8. Variations of index of performance, I, with power
consumed.

Figure 8 shows the results corresponding to the
temperature profiles of Figs. 3(a)-(c). This clearly
indicated that for this problem useful control involves
about 3kW of power, and if this power is doubled
to 6kW an almost completely flat temperature profile
can be achieved. An interesting incidental observation
is that although the Matrix—Riccati method was
successful only in the range R > 5, this represents a
good part of the region where control of the outlet
temperature profile is significant.
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5. CONCLUDING COMMENTS

This problem was considered as part of a more
extensive study of the dynamic control of glass flowing
down a pipe. A complicating feature, not dealt with
in the present paper, is that in the case of molten glass
viscosity variations are likely to be significant. A scheme
for dealing with this aspect of the problem has been
developed. The next stage will be to consider dynamic
control to take account of fluctuations in operating
conditions, external disturbances, etc. Problem of
observability and state reconstruction will feature at
this stage.

Since the dimensionality of the problem will increase
significantly it will become imperative to devise or
make use of methods which economise on computer
storage. From this study, the dynamic programming
algorithm has emerged as the more promising of the
two approaches considered and work is in hand to
refine it for the next stage. The Matrix—Riccati equation
was solved by the direct integration of the differential
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equations. Many other methods exist in the literature
with improved characteristics and a study of these could
be fruitful.
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CONTROLE DE LA TEMPERATURE D'UN ECOULEMENT DE POISEUILLE AVEC
APPLICATION PARTICULIERE A UN ECOULEMENT DE VERRE FONDU

Résumé—Le probléme considéré est celui du controle de la distribution de température dans un fluide
en écoulement laminaire établi dans un tube circulaire. On suppose qu’'un dispositif approprié de
chauffage et de refroidissement est placé dans le manchon réfractaire enveloppant le tube et que la
température moyenne du fluide doit étre réduite (ou augmentée) d’'une quantité déterminée durant son
passage dans une section de longueur donnée. L’aspect essentiel du probléme réside dans la condition
supplémentaire portant sur la distribution de température dans la section finale qui doit étre contrdlée

afin d’obtenir la distribution désirée.

Le probléme est résolu par application de la théorie du contrdle optimal. Une fonctionnelle de cout
quadratique est construite qui comprend un terme mesurant Iécart de I'approximation obtenue par
rapport a la distribution de température finale désirée et un terme de contrainte permettant d’éviter des
températures du réfractaire irréalisables. La solution est obtenue par utilisation d’un algorithme matriciel

de Riccati ainsi que par programmation dynamique.

Des résultats numériques sont présentés dans le cas particulier d’un écoulement de verre fondu. On a
tracé les distributions types de température a la sortie et dans le réfractaire et on montre les avantages
du controle de température. Les résultats font apparaitre clairement avec quelle approximation la

distribution de température désirée peut étre atteinte, pour une puissance disponible donnée.

DIE REGELUNG DER TEMPERATUR EINER POISEUILLE-STROMUNG IN
BESONDEREM HINBLICK AUF DIE STROMUNG VON GESCHMOLZENEM GLAS

Zusammenfassung —Es wird das Problem der Regelung der Temperaturverteilung eines Fluides bei voll
ausgebildeter laminarer Rohrstromung untersucht. Es wird angenommen, daB geeignete Heiz- und
Kiihlvorrichtungen in einem hitzebestindigen Gehiduse um das Rohr vorhanden sind und daB beim Durch-
strdmen einer bestimmten Rohrstrecke die mittlere Temperatur des Fluides um einen bestimmten Betrag
gesenkt (oder erhdht) werden soll. Das Hauptmerkmal des Problems liegt in der zusitzlichen Forderung,
daB zur Erreichung der gewiinschten Temperaturverteilung die Verteilung im Austrittsquerschnitt

ebenfalls geregelt werden muB.

Das Problem wird mit Hilfe der Optimal-Regeltheorie gelost. Es wird eine quadratische Funktion
aufgestellt, die einen Term enthilt, der die Anpassung an die gewiinschte Austrittstemperatur-Verteilung
erfaBt und einen Begrenzungsterm, der unrealistische Temperaturen im Heizelement ausscheidet. Die
Losung wird durch den Matrix-Riccati-Algorithmus und durch dynamisches Programmieren erhalten.

Es werden numerische Ergebnisse fiir eine spezielle Stromung von geschmolzenem Glas angegeben.
Die typischen Temperaturen im Austrittsquerschnitt und in der Heizstrecke werden dargestellt und die
Vorteile der Regelung aufgezeigt. Die Ergebnisse zeigen deutlich, bis zu welchem AusmaB die gewiinschte

Temperaturverteilung bei gegebener Leistung erreicht werden kann.
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TEMIIEPATYPHBIFI KOHTPOJIb TEUEHMS TTYA3EMIIA 114 YACTHOIO
CJIVYASA NIOTOKA PACIJIABJIIEHHOIO CTEKJIA

Amnoramss — PaccMaTpupaeTcs 3aava O PEry/JMpOBAaHHH DACTIPCICICHHS TEMIIEPATYPbl KHUAKOCTH
OpPY MOJHOCTBIO Pa3BHTOM JIAMHHADHOM TeyeHMHM B Koibuepoli TpyGe. Ilpemnonaraercs, uTo B
HKAPOUPOYHOM HYeXJie, OKpyXKawollieM TpySy, MMEIOTCA COOTBETCTBYIOLUME YCTPOHCTBA AJS Harpe-
BaHMSl M OXJAXKICHHS M YTO NPH HPOXOXKIEHHH dYepe3 YYacTOK TpyObl 3alaHHOW IUIHHBI CPEIHSs
TeMOEPATYPa XUIKOCTH MODKHA CHHXKATHCH (MM TIOBBILIATLCA) HA OINpENIEJIEHHYIO BEIHYHHY.
OcHoBHast 0cOGEHHOCTh 3afayd 3aKNIOYAaeTCs B HOMOJHHTENbHOM TpeGOBaHMM O peTyIHPOBAHUH
pacnpeneneHus TeMIEPaTypbl B KOHEYHOM CEYCHHM [UIS AOCTHKCHHS XKETaeMOro pacnpenc/ieHHA.
3anaya pemaerca ¢ NOMOWBIO TEOPHHM ONTHMAJIBHOTO perynuposanus. [TonyueH KsaapaTwyHbIN
uenesoil GyHKUMOHAN, BKIFOYAOIIMIA YIIeH, KOTOPBIR onpeaenseT 61H30¢Th NpofHOro ¥ 3a1aHHOTO
pacnpeiencHus TEMIEPATYPLl HAa BXOLE, a TAKKE WIEH, IO3IBOSAIOUIAN HCKIIOMHTL HEPEAsIbHbIE
TeMIepaTypsl B OrHeynope. PellieHue MOJIy4eHO ¢ DOMOWBLKO anaroputMa Martpukca- PHkkati o
AHHAMHKYECKOTO TPOrPAMMEPOBAHUA, TIpHBONATCA PE3y/IbTATH AJS YACTHOTO Clydas pacmjiaBiieH-
Horo crexna. IToKasaHbl THIMYHLIC PACHPEACNCHHA TEMIEPATYD Ha BXOAE U B OrHEYNOpE M Npo-
JEeMOHCTPHPOBAHBL NPEHMYILECTBA PEryJHpoBanus, Pe3yibTaThl YETKO MOKA3ILIBAIOT CTENeHb
MOCTHXKEHHS HEOOXOAMMOro TEMNEPATYPHOrO PACTIPEAEHCHAS NPH 3a0aHHOH MOIWHOCTH,
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